

tempvars

Streamlined temporary variable management in Jupyter Notebook, IPython, etc.

A frustrating aspect of working with Jupyter notebooks
is debugging a worksheet for half an hour
and discovering a carried-over variable name was hanging around
in the notebook namespace and causing
that cryptic misbehavior. Similarly, it’s incredibly annoying to open
a broken notebook that “worked fine” the last
time it was used because of random variables lingering in the
namespace.

The TempVars context manager helps to avoid these pitfalls by
masking selected identifiers from the namespace for the duration of
the with [https://docs.python.org/3.5/reference/compound_stmts.html#with] suite, then restoring them afterwards (or not, if desired).
Further, any variables created within the managed context
that match the criteria passed to TempVars are removed from
the namespace upon exiting, ensuring these values do not spuriously
contribute to following code. For convenience, all variables
that were removed from the namespace at both entry and exit
are stored with their values for later reference; see
Inspecting Masked Variables and Inspecting Discarded Temporary Variables, respectively,
in the usage instructions.

NOTE: Due to the way Python handles non-global variable scopes, TempVars
can only be used at the global scope. Any attempt
to use TempVars in non-global contexts will result in a
RuntimeError [https://docs.python.org/3.5/library/exceptions.html#RuntimeError]. Viable use-cases include Jupyter notebooks,
the IPython and basic Python REPLs, and the outermost scope of executed and
imported modules. Preliminary testing indicates it also works with
cauldron-notebook [https://github.com/sernst/cauldron], though
it may be less helpful there due to the step-local scoping paradigm used
(shared values must be passed around via cauldron.shared).

NOTE ALSO that tempvars is Python 3 only.

Install with pip install tempvars, import as
from tempvars import TempVars, and use as
with TempVars({pattern args}):.

The project source is hosted on GitHub [https://github.com/bskinn/tempvars].
Bug reports and feature requests are welcomed at the
Issues [https://github.com/bskinn/tempvars/issues] page there.
If you like the idea of an existing enhancement in the Issues list,
please comment to say so; it’ll help prioritization.

Contents:

	Usage

	API

tempvars Usage Examples

In all of these examples, it is assumed that TempVars
has already been imported and that foo and bar have
been defined as:

from tempvars import TempVars

foo = 1
bar = 2

The removal of a pre-existing variable from the namespace for the
duration of a with TempVars context is termed masking here.
Temporary variables created within the managed context that match
one or more of names, starts, and/or ends are
discarded (removed from the namespace) when exiting the context.

Note

The most common use case us anticipated to be via either
starts or ends, where a common prefix or suffix,
respectively (such as t_ or _t), is used to mark all
temporary variables within the managed context. See
“Masking Variables by Pattern,” below.

Contents

	Recommended Standard Usage

	Masking Specific Variables

	Masking Variables by Pattern

	Discarding Masked Variables

	Binding TempVars Instances

	Inspecting Masked Variables

	Inspecting Discarded Temporary Variables

Recommended Standard Usage

This author’s standard approach for using TempVars
is via the starts argument as follows:

>>> with TempVars(starts=['t_']):
... t_foo = foo
... t_baz = foo + bar
... print(t_foo + t_baz)
4
>>> print('t_foo' in dir())
False
>>> print('t_baz' in dir())
False

As shown, any variable desired to be temporary can just be prefixed with
t_, and it will not survive beyond the scope of the relevant
TempVars suite.

Masking Specific Variables

The most basic usage is to supply individual variable names in the
names argument:

>>> with TempVars(names=['foo', 'bar']):
... print('foo' in dir())
... print('bar' in dir())
...
False
False
>>> print(foo + bar)
3

Note

names must always be a list of strings, even when
only one variable name is passed.

If a variable name passed to names doesn’t exist in the namespace,
TempVars silently ignores it when entering the with [https://docs.python.org/3.5/reference/compound_stmts.html#with] block. It does,
however, still discard any matching variables from the namespace upon exiting
the with [https://docs.python.org/3.5/reference/compound_stmts.html#with] block:

>>> with TempVars(names=['baz']):
... print('foo' in dir())
... print('bar' in dir())
... print(2 * (foo + bar))
... baz = 5
... print(baz)
...
True
True
6
5
>>> print(2 * (foo + bar))
6
>>> 'baz' in dir()
False

Masking Variables by Pattern

As noted above,
variables can also be masked by pattern matching. Currently,
only ‘starts with’ and ‘ends with’ matching styles are supported:

>>> with TempVars(starts=['fo'], ends=['ar']):
... print('foo' in dir())
... print('bar' in dir())
...
False
False
>>> print(foo + bar)
3

Note

starts and ends must always be lists of strings, even when
only one pattern is passed.

To avoid accidental masking of system variables, the starts
argument cannot start with a double underscore:

>>> try:
... with TempVars(starts=['__foo']):
... pass
... except ValueError:
... print('Argument rejected')
...
Argument rejected

Similarly, ends cannot end with a double underscore:

>>> try:
... with TempVars(ends=['foo__']):
... pass
... except ValueError:
... print('Argument rejected')
...
Argument rejected

As well, neither starts nor ends can be a single
underscore, since this also would mask Python system
variables:

>>> try:
... with TempVars(starts=['_']):
... pass
... except ValueError:
... print('Argument rejected')
...
Argument rejected

As with names, starts and ends also discard at exit any
matching variables created within the with [https://docs.python.org/3.5/reference/compound_stmts.html#with] block, whether they existed
previously or not:

>>> with TempVars(starts=['t_'], ends=['_t']):
... t_foo = 6
... bar_t = 7
... print(t_foo * bar_t)
...
42
>>> 't_foo' in dir()
False
>>> 'bar_t' in dir()
False

Discarding Masked Variables

If desired, TempVars can be instructed not to restore any variables
it masks from the original namespace, effectively discarding them
permanently:

>>> with TempVars(names=['foo', 'bar'], restore=False):
... pass
...
>>> 'foo' in dir()
False
>>> 'bar' in dir()
False

TempVars contexts can be freely nested to allow selective
restore/discard behavior:

>>> with TempVars(names=['foo'], restore=False):
... with TempVars(names=['bar']):
... foo = 3
... bar = 5
... print(foo * bar)
... print(foo * bar)
15
6
>>> print(bar)
2
>>> 'foo' in dir()
False

Binding TempVars Instances

TempVars is constructed so that each instance can be bound as part
of the with [https://docs.python.org/3.5/reference/compound_stmts.html#with] statement, for later inspection within and after the
managed context. The masking pattern arguments are stored without
modification, but are duplicated from the input argument to avoid munging of
mutable arguments:

>>> names_in = ['foo']
>>> with TempVars(names=names_in, starts=['baz', 'quux'], ends=['ar']) as tv:
... print(tv.starts)
... print(tv.ends)
... print(tv.names)
... print('foo' in dir())
... print('bar' in dir())
['baz', 'quux']
['ar']
['foo']
False
False
>>> names_in.append('quorz')
>>> print(tv.names)
['foo']

As shown above, these instance variables can also be examined after
the end of the managed context.

Inspecting Masked Variables

TempVars provides a means to access the masked variables from within
the managed context, via the stored_nsvars
instance variable:

>>> with TempVars(names=['foo']) as tv:
... print(list(tv.stored_nsvars.keys()))
... print(tv.stored_nsvars['foo'])
... print('foo' in dir())
['foo']
1
False

The masked variables remain available after the end of the managed
context, even if they are not restored when the context exits:

>>> with TempVars(names=['foo']) as tv:
... pass
>>> print(tv.stored_nsvars['foo'])
1
>>> with TempVars(names=['bar'], restore=False) as tv2:
... pass
>>> print('bar' in dir())
False
>>> print(tv2.stored_nsvars['bar'])
2

A caveat: the masked variables are bound within
stored_nsvars by simple assignment,
which can have (possibly undesired) side effects when
mutable objects are modified after being masked:

>>> baz = [1, 2, 3]
>>> with TempVars(names=['baz']) as tv:
... tv.stored_nsvars['baz'].append(12)
>>> print(baz)
[1, 2, 3, 12]
>>> baz.remove(2)
>>> print(tv.stored_nsvars['baz'])
[1, 3, 12]

If copy() [https://docs.python.org/3.5/library/copy.html#copy.copy] or deepcopy() [https://docs.python.org/3.5/library/copy.html#copy.deepcopy] behavior is of interest,
please add a comment to that effect on the
related GitHub issue [https://github.com/bskinn/tempvars/issues/20].

Inspecting Discarded Temporary Variables

In an analogous fashion to stored_nsvars,
the temporary variables discarded from the namespace at the exit of
the managed context are stored in
retained_tempvars:

>>> with TempVars(names=['foo']) as tv:
... foo = 5
... print(foo * bar)
10
>>> print(foo + tv.retained_tempvars['foo'])
6

Also as with stored_nsvars, at this time
the values within retained_tempvars are
bound by simple assignment, leading to similar possible side effects:

>>> baz = [1, 2]
>>> with TempVars(names=['baz']) as tv:
... tv.stored_nsvars['baz'].append(3)
... baz = tv.stored_nsvars['baz']
>>> tv.retained_tempvars['baz'].append(4)
>>> print(baz)
[1, 2, 3, 4]

As above, if copy() [https://docs.python.org/3.5/library/copy.html#copy.copy] and/or deepcopy() [https://docs.python.org/3.5/library/copy.html#copy.deepcopy]
behavior is of interest, please comment on the
relevant GitHub issue [https://github.com/bskinn/tempvars/issues/20].

tempvars API

	
class tempvars.TempVars(names=None, starts=None, ends=None, restore=True)

	Context manager for handling temporary variables at the global scope.

WILL NOT WORK PROPERLY unless used as a context manager!!

CAN ONLY BE USED at global scopes (Python/IPython REPL, Jupyter notebook,
etc.)

	Parameters

	
	names – list [https://docs.python.org/3.5/library/stdtypes.html#list] of str [https://docs.python.org/3.5/library/stdtypes.html#str] - Variables will be treated as temporary if their names
test equal to any of these items.

	starts – list [https://docs.python.org/3.5/library/stdtypes.html#list] of str [https://docs.python.org/3.5/library/stdtypes.html#str] - Variables will be treated as temporary if their names
start with any of these patterns (tested with
.startswith(starts[i]) [https://docs.python.org/3.5/library/stdtypes.html#str.startswith]).

	ends – list [https://docs.python.org/3.5/library/stdtypes.html#list] of str [https://docs.python.org/3.5/library/stdtypes.html#str] - Variables will be treated as temporary if their names
end with any of these patterns (tested with
.endswith(ends[i]) [https://docs.python.org/3.5/library/stdtypes.html#str.endswith]).

	restore – bool [https://docs.python.org/3.5/library/functions.html#bool] - If True [https://docs.python.org/3.5/library/constants.html#True], any variables hidden from the namespace upon entry
into the with [https://docs.python.org/3.5/reference/compound_stmts.html#with] suite are restored to the namespace upon exit. If
False [https://docs.python.org/3.5/library/constants.html#False], no variables are restored.

The TempVars instance can be bound in the with [https://docs.python.org/3.5/reference/compound_stmts.html#with] statement for
access to stored variables, etc.:

>>> with TempVars(names=['abcd']) as tv:
... pass

See the usage examples page for more information.

Class Members

These objects are accessible via the instance bound as part of the
with [https://docs.python.org/3.5/reference/compound_stmts.html#with] statement (tv from the above snippet). All are constructed
using attr.ib() [https://www.attrs.org/en/stable/api.html#attr.ib].

	
names

	list [https://docs.python.org/3.5/library/stdtypes.html#list] of str [https://docs.python.org/3.5/library/stdtypes.html#str] - All variable names passed to names.

	
starts

	list [https://docs.python.org/3.5/library/stdtypes.html#list] of str [https://docs.python.org/3.5/library/stdtypes.html#str] - All passed .startswith [https://docs.python.org/3.5/library/stdtypes.html#str.startswith]
matching patterns.

	
ends

	list [https://docs.python.org/3.5/library/stdtypes.html#list] of str [https://docs.python.org/3.5/library/stdtypes.html#str] - All passed .endswith [https://docs.python.org/3.5/library/stdtypes.html#str.endswith]
matching patterns.

	
restore

	bool [https://docs.python.org/3.5/library/functions.html#bool] flag indicating whether to restore the prior namespace
contents. Can be changed within the with [https://docs.python.org/3.5/reference/compound_stmts.html#with] suite.

	
stored_nsvars

	dict [https://docs.python.org/3.5/library/stdtypes.html#dict] container for preserving variables masked from
the namespace, along with their associated values.

	
retained_tempvars

	dict [https://docs.python.org/3.5/library/stdtypes.html#dict] container for storing the temporary variables discarded from
the namespace after exiting the with [https://docs.python.org/3.5/reference/compound_stmts.html#with] block.

Index

 E
 | N
 | R
 | S
 | T

E

 	
 	ends (tempvars.TempVars attribute)

N

 	
 	names (tempvars.TempVars attribute)

R

 	
 	restore (tempvars.TempVars attribute)

 	
 	retained_tempvars (tempvars.TempVars attribute)

S

 	
 	starts (tempvars.TempVars attribute)

 	
 	stored_nsvars (tempvars.TempVars attribute)

T

 	
 	TempVars (class in tempvars)

 nav.xhtml

 Table of Contents

 		
 tempvars

 		
 Usage

 		
 Recommended Standard Usage

 		
 Masking Specific Variables

 		
 Masking Variables by Pattern

 		
 Discarding Masked Variables

 		
 Binding TempVars Instances

 		
 Inspecting Masked Variables

 		
 Inspecting Discarded Temporary Variables

 		
 API

_static/down-pressed.png

_static/down.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

