
tempvars Documentation
Release 1.0

Brian Skinn

Nov 14, 2018





Contents:

1 tempvars Usage Examples 3

2 tempvars API 9

Python Module Index 11

i



ii



tempvars Documentation, Release 1.0

Streamlined temporary variable management in Jupyter Notebook, IPython, etc.

A frustrating aspect of working with Jupyter notebooks is debugging a worksheet for half an hour and discovering
a carried-over variable name was hanging around in the notebook namespace and causing that cryptic misbehavior.
Similarly, it’s incredibly annoying to open a broken notebook that “worked fine” the last time it was used because of
random variables lingering in the namespace.

The TempVars context manager helps to avoid these pitfalls by masking selected identifiers from the namespace for
the duration of the with suite, then restoring them afterwards (or not, if desired). Further, any variables created within
the managed context that match the criteria passed to TempVars are removed from the namespace upon exiting,
ensuring these values do not spuriously contribute to following code. For convenience, all variables that were removed
from the namespace at both entry and exit are stored with their values for later reference; see Inspecting Masked
Variables and Inspecting Discarded Temporary Variables, respectively, in the usage instructions.

NOTE: Due to the way Python handles non-global variable scopes, TempVars can only be used at the global scope.
Any attempt to use TempVars in non-global contexts will result in a RuntimeError. Viable use-cases include
Jupyter notebooks, the IPython and basic Python REPLs, and the outermost scope of executed and imported modules.
Preliminary testing indicates it also works with cauldron-notebook, though it may be less helpful there due to the
step-local scoping paradigm used (shared values must be passed around via cauldron.shared).

NOTE ALSO that tempvars is Python 3 only.

Install with pip install tempvars, import as from tempvars import TempVars, and use as with
TempVars({pattern args}):.

The project source is hosted on GitHub. Bug reports and feature requests are welcomed at the Issues page there. If
you like the idea of an existing enhancement in the Issues list, please comment to say so; it’ll help prioritization.

Contents: 1

https://docs.python.org/3.5/reference/compound_stmts.html#with
https://github.com/sernst/cauldron
https://github.com/bskinn/tempvars
https://github.com/bskinn/tempvars/issues


tempvars Documentation, Release 1.0

2 Contents:



CHAPTER 1

tempvars Usage Examples

In all of these examples, it is assumed that TempVars has already been imported and that foo and bar have been
defined as:

from tempvars import TempVars

foo = 1
bar = 2

The removal of a pre-existing variable from the namespace for the duration of a with TempVars context is termed
masking here. Temporary variables created within the managed context that match one or more of names, starts,
and/or ends are discarded (removed from the namespace) when exiting the context.

Note: The most common use case us anticipated to be via either starts or ends, where a common prefix or suffix,
respectively (such as t_ or _t), is used to mark all temporary variables within the managed context. See “Masking
Variables by Pattern,” below.

1.1 Table of Contents

• Masking Specific Variables

• Masking Variables by Pattern

• Discarding Masked Variables

• Binding TempVars Instances

• Inspecting Masked Variables

• Inspecting Discarded Temporary Variables

3

api.html#tempvars.TempVars
api.html#tempvars.TempVars
api.html#tempvars.TempVars


tempvars Documentation, Release 1.0

1.1.1 Masking Specific Variables

The most basic usage is to supply individual variable names in the names argument:

>>> with TempVars(names=['foo', 'bar']):
... print('foo' in dir())
... print('bar' in dir())
...
False
False
>>> print(foo + bar)
3

Note: names must always be a list of strings, even when only one variable name is passed.

If a variable name passed to names doesn’t exist in the namespace, TempVars silently ignores it when entering the
with block. It does, however, still discard any matching variables from the namespace upon exiting the with block:

>>> with TempVars(names=['baz']):
... print('foo' in dir())
... print('bar' in dir())
... print(2 * (foo + bar))
... baz = 5
... print(baz)
...
True
True
6
5
>>> print(2 * (foo + bar))
6
>>> 'baz' in dir()
False

1.1.2 Masking Variables by Pattern

Variables can also be masked by pattern matching. Currently, only ‘starts with’ and ‘ends with’ matching styles are
supported:

>>> with TempVars(starts=['fo'], ends=['ar']):
... print('foo' in dir())
... print('bar' in dir())
...
False
False
>>> print(foo + bar)
3

Note: starts and ends must always be lists of strings, even when only one pattern is passed.

To avoid accidental masking of system variables, the starts argument cannot start with a double underscore:

4 Chapter 1. tempvars Usage Examples

api.html#tempvars.TempVars
api.html#tempvars.TempVars
api.html#tempvars.TempVars
https://docs.python.org/3.5/reference/compound_stmts.html#with
https://docs.python.org/3.5/reference/compound_stmts.html#with
api.html#tempvars.TempVars
api.html#tempvars.TempVars
api.html#tempvars.TempVars


tempvars Documentation, Release 1.0

>>> try:
... with TempVars(starts=['__foo']):
... pass
... except ValueError:
... print('Argument rejected')
...
Argument rejected

Similarly, ends cannot end with a double underscore:

>>> try:
... with TempVars(ends=['foo__']):
... pass
... except ValueError:
... print('Argument rejected')
...
Argument rejected

As well, neither starts nor ends can be a single underscore, since this also would mask Python system variables:

>>> try:
... with TempVars(starts=['_']):
... pass
... except ValueError:
... print('Argument rejected')
...
Argument rejected

As with names, starts and ends also discard at exit any matching variables created within the with block, whether they
existed previously or not:

>>> with TempVars(starts=['t_'], ends=['_t']):
... t_foo = 6
... bar_t = 7
... print(t_foo * bar_t)
...
42
>>> 't_foo' in dir()
False
>>> 'bar_t' in dir()
False

1.1.3 Discarding Masked Variables

If desired, TempVars can be instructed not to restore any variables it masks from the original namespace, effectively
discarding them permanently:

>>> with TempVars(names=['foo', 'bar'], restore=False):
... pass
...
>>> 'foo' in dir()
False
>>> 'bar' in dir()
False

TempVars contexts can be freely nested to allow selective restore/discard behavior:

1.1. Table of Contents 5

api.html#tempvars.TempVars
api.html#tempvars.TempVars
api.html#tempvars.TempVars
api.html#tempvars.TempVars
api.html#tempvars.TempVars
api.html#tempvars.TempVars
https://docs.python.org/3.5/reference/compound_stmts.html#with


tempvars Documentation, Release 1.0

>>> with TempVars(names=['foo'], restore=False):
... with TempVars(names=['bar']):
... foo = 3
... bar = 5
... print(foo * bar)
... print(foo * bar)
15
6
>>> print(bar)
2
>>> 'foo' in dir()
False

1.1.4 Binding TempVars Instances

TempVars is constructed so that each instance can be bound as part of the with statement, for later inspection within
and after the managed context. The masking pattern arguments are stored without modification, but are duplicated
from the input argument to avoid munging of mutable arguments:

>>> names_in = ['foo']
>>> with TempVars(names=names_in, starts=['baz', 'quux'],
... ends=['ar']) as tv:
... print(tv.starts)
... print(tv.ends)
... print(tv.names)
... print('foo' in dir())
... print('bar' in dir())
['baz', 'quux']
['ar']
['foo']
False
False
>>> names_in.append('quorz')
>>> print(tv.names)
['foo']

As shown above, these instance variables can also be examined after the end of the managed context.

1.1.5 Inspecting Masked Variables

TempVars provides a means to access the masked variables from within the managed context, via the
stored_nsvars instance variable:

>>> with TempVars(names=['foo']) as tv:
... print(list(tv.stored_nsvars.keys()))
... print(tv.stored_nsvars['foo'])
... print('foo' in dir())
['foo']
1
False

The masked variables remain available after the end of the managed context, even if they are not restored when the
context exits:

6 Chapter 1. tempvars Usage Examples

https://docs.python.org/3.5/reference/compound_stmts.html#with


tempvars Documentation, Release 1.0

>>> with TempVars(names=['foo']) as tv:
... pass
>>> print(tv.stored_nsvars['foo'])
1
>>> with TempVars(names=['bar'], restore=False) as tv2:
... pass
>>> print('bar' in dir())
False
>>> print(tv2.stored_nsvars['bar'])
2

A caveat: the masked variables are bound within stored_nsvars by simple assignment, which can have (possibly
undesired) side effects when mutable objects are modified after being masked:

>>> baz = [1, 2, 3]
>>> with TempVars(names=['baz']) as tv:
... tv.stored_nsvars['baz'].append(12)
>>> print(baz)
[1, 2, 3, 12]
>>> baz.remove(2)
>>> print(tv.stored_nsvars['baz'])
[1, 3, 12]

If copy() or deepcopy() behavior is of interest, please add a comment to that effect on the related GitHub issue.

1.1.6 Inspecting Discarded Temporary Variables

In an analogous fashion to stored_nsvars, the temporary variables discarded from the namespace at the exit of
the managed context are stored in retained_tempvars:

>>> with TempVars(names=['foo']) as tv:
... foo = 5
... print(foo * bar)
10
>>> print(foo + tv.retained_tempvars['foo'])
6

Also as with stored_nsvars, at this time the values within retained_tempvars are bound by simple assign-
ment, leading to similar possible side effects:

>>> baz = [1, 2]
>>> with TempVars(names=['baz']) as tv:
... tv.stored_nsvars['baz'].append(3)
... baz = tv.stored_nsvars['baz']
>>> tv.retained_tempvars['baz'].append(4)
>>> print(baz)
[1, 2, 3, 4]

As above, if copy() and/or deepcopy() behavior is of interest, please comment on the relevant GitHub issue.

1.1. Table of Contents 7

https://docs.python.org/3.5/library/copy.html#copy.copy
https://docs.python.org/3.5/library/copy.html#copy.deepcopy
https://github.com/bskinn/tempvars/issues/20
https://docs.python.org/3.5/library/copy.html#copy.copy
https://docs.python.org/3.5/library/copy.html#copy.deepcopy
https://github.com/bskinn/tempvars/issues/20


tempvars Documentation, Release 1.0

8 Chapter 1. tempvars Usage Examples



CHAPTER 2

tempvars API

Base module of tempvars package.

class tempvars.TempVars(names=None, starts=None, ends=None, restore=True)
Context manager for handling temporary variables at the global scope.

WILL NOT WORK PROPERLY unless used as a context manager!!

CAN ONLY BE USED at global scopes (Python/IPython REPL, Jupyter notebook, etc.)

Parameters

• names – list of str - Variables will be treated as temporary if their names test equal to
any of these items.

• starts – list of str - Variables will be treated as temporary if their names start with
any of these patterns (tested with .startswith(starts[i])).

• ends – list of str - Variables will be treated as temporary if their names end with any
of these patterns (tested with .endswith(ends[i])).

• restore – bool - If True, any variables hidden from the namespace upon entry into the
with suite are restored to the namespace upon exit. If False, no variables are restored.

The TempVars instance can be bound in the with statement for access to stored variables, etc.:

>>> with TempVars(names=['abcd']) as tv:
... pass

See the usage examples page for more information.

Class Members

These objects are accessible via the instance bound as part of the with statement (tv from the above snippet).
All are constructed using attr.ib().

names
list of str - All variable names passed to names.

9

https://docs.python.org/3.5/library/stdtypes.html#list
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#list
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#str.startswith
https://docs.python.org/3.5/library/stdtypes.html#list
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#str.endswith
https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/library/constants.html#True
https://docs.python.org/3.5/reference/compound_stmts.html#with
https://docs.python.org/3.5/library/constants.html#False
https://docs.python.org/3.5/reference/compound_stmts.html#with
https://docs.python.org/3.5/reference/compound_stmts.html#with
http://www.attrs.org/en/stable/api.html#attr.ib
https://docs.python.org/3.5/library/stdtypes.html#list
https://docs.python.org/3.5/library/stdtypes.html#str
api.html#tempvars.TempVars


tempvars Documentation, Release 1.0

starts
list of str - All passed .startswith matching patterns.

ends
list of str - All passed .endswith matching patterns.

restore
bool flag indicating whether to restore the prior namespace contents. Can be changed within the with
suite.

stored_nsvars
dict container for preserving variables masked from the namespace, along with their associated values.

retained_tempvars
dict container for storing the temporary variables discarded from the namespace after exiting the with
block.

10 Chapter 2. tempvars API

https://docs.python.org/3.5/library/stdtypes.html#list
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#str.startswith
https://docs.python.org/3.5/library/stdtypes.html#list
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#str.endswith
https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/reference/compound_stmts.html#with
https://docs.python.org/3.5/library/stdtypes.html#dict
https://docs.python.org/3.5/library/stdtypes.html#dict
https://docs.python.org/3.5/reference/compound_stmts.html#with


Python Module Index

t
tempvars, 9

11



tempvars Documentation, Release 1.0

12 Python Module Index



Index

E
ends (tempvars.TempVars attribute), 10

N
names (tempvars.TempVars attribute), 9

R
restore (tempvars.TempVars attribute), 10
retained_tempvars (tempvars.TempVars attribute), 10

S
starts (tempvars.TempVars attribute), 9
stored_nsvars (tempvars.TempVars attribute), 10

T
TempVars (class in tempvars), 9
tempvars (module), 9

13


	tempvars Usage Examples
	tempvars API
	Python Module Index

